
11.1 Introduction
A typical Linux system has thousands of files. The Filesystem Hierarchy Standard (discussed in

detail in a later chapter) provides a guideline for distributions on how to organize these files. In this

chapter, you will see how software package management systems can provide you with information

about the location of files belonging to a package.

The Linux kernel is at the core of the GNU/Linux operating system. This chapter will discuss the role

of the Linux kernel and how it provides information about the system under

the /proc and/sys pseudo-filesystems.

You will see how each command that you execute causes a process to be run and how you can

view running processes with the ps command. You will also see discussion of how the system

records or logs messages from the background processes called daemons.

Finally, you will see how to view the kernel ring buffer to view messages it contains with the dmesg

command.

11.2 Linux Essentials Exam Objectives
This chapter will cover the topics for the following Linux Essentials exam objectives:

Topic 4: The Linux Operating System (weight: 8)

 4.3: Where Data is Stored

 Weight: 3

 Description: Where various types of information are stored on a Linux system.

 Key Knowledge Areas:

 Kernel

 Processes

 syslog, klog, dmesg

 /lib, /usr/lib, /etc, /var/log

 The following is a partial list of the used files, terms, and utilities:

 Programs, libraries, packages and package databases, system configuration

 Processes and process tables, memory addresses, system messaging and

logging

 ps, top, free

11.3 Package Management
Package management is a system by which software can be installed, updated, queried or removed

from a filesystem. In Linux, there are many different software package management systems, but

the two most popular are those from Debian and Red Hat.

11.3.1 Debian Package Management
The Debian distribution and its derivatives such as Ubuntu and Mint, use the Debian package

management system. At the heart of Debian-derived distributions package management are the

software packages that are distributed as files ending in ".deb".

The lowest level tool for managing these files is the dpkg command. This command can be tricky for

novice Linux users, so the Advanced Package Tool, apt-get, a front-end program to the dpkg tool,

makes management of packages even easier. There are other command line tools which serve as

front-ends to dpkg, such as aptitude, as well as GUI front-ends like synaptic and software-

center (shown below).

11.3.1.1 Debian - Adding Packages
The Debian repositories contain more than 65,000 different packages of software. To get an updated

list from these Internet repositories, you can execute the sudo apt-cache update command.

To search for keywords within these packages, you can use the sudo apt-cache search

keyword command.

Once you've found the package that you want to install, you can install it with the sudo apt-get

install package command.

To execute these commands, your system will need access to the Internet. The apt-cache

command searches repositories on the Internet for these software programs.

11.3.1.2 Debian - Updating Packages
If you want to update an individual package, you perform the command to install that package: sudo

apt-get install package

If an older version of the package is already installed, then it will be upgraded. Otherwise, a new

installation would take place.

If you want to update all possible packages, then you would execute the sudo apt-get upgrade

command.

Users who log in with a graphical interface may have a message appear in the notification area from

the update-manager indicating that updates are available, as shown below:

11.3.1.3 Debian - Removing Packages
Beware that removing one package of software may result in the removal of other packages. Due to

the dependencies between packages, if you remove a package, then all packages that need, or

depend on that package will be removed as well.

If you want to remove all the files of a software package, except for the configuration files, then you

can execute the sudo apt-get remove package command.

If you want to remove all the files of a software package, including the configuration files, then you

can execute the sudo apt-get --purge remove package command.

You may want to keep the configuration files in the event that you plan to reinstall the software

package at a later time.

11.3.1.4 Debian - Querying Packages
There are several different kinds of queries that administrators need to use. To get a list of all the

packages that are currently installed on the system, execute the dpkg -l command.

To list the files that comprise a particular package, you can execute the dpkg -L package

command.

To query a package for information, or its state, use the dpkg -s package command.

To determine if a particular file was put on the filesystem as the result of installing a package, use

the dpkg -S /path/to/file command. If the file was part of a package, then the package name

could be provided. For example:

sysadmin@localhost:~$ dpkg -S /usr/bin/who

coreutils: /usr/bin/who

The previous example shows the file /usr/bin/who is part of the coreutils package.

11.3.2 RPM Package Management
The Linux Standards Base, which is a Linux Foundation project, is designed to specify (through a

consensus) a set of standards that increase the compatibility between conforming Linux systems.

According to the Linux Standards Base, the standard package management system is RPM.

RPM makes use of an ".rpm" file for each software package. This system is what Red Hat-derived

distributions (like Red Hat, Centos, and Fedora) use to manage software. In addition, several other

distributions that are not Red Hat-derived (such as SUSE, OpenSUSE and Mandriva) also use RPM.

Like the Debian system, RPM Package Management systems track dependencies between

packages. Tracking dependencies ensures that when you install a package, the system will also

install any packages needed by that package to function correctly. Dependencies also ensure that

software updates and removals are performed properly.

The back-end tool most commonly used for RPM Package Management is the rpm command. While

the rpm command can install, update, query and remove packages, the command line front end

tools such as yum and up2date automate the process of resolving dependency issues.

In addition, there are GUI-based front end tools such as yumex and gpk-application (shown

below) that also make RPM package management easier.

You should note that the many of following commands will require root privileges. The rule of thumb

is that if a command affects the state of a package, you will need to have administrative access. In

other words, a regular user can perform a query or a search, but to add, update or remove a

package requires the command be executed as the root user.

11.3.2.1 RPM - Adding Packages
To search for a package from the configured repositories, execute the yum search keyword

command.

To install a package, along with its dependencies, execute the yum install packagecommand.

11.3.2.2 RPM - Updating Packages

If you want to update an individual software package, you can execute the yum

update packagecommand.

If you want to update all packages, you can execute the yum update command.

If updates are available and the user is using the GUI, then the gpk-update-viewer may show a

message in the notification area of the screen indicating that updates are available.

11.3.2.3 RPM - Removing Packages
As is the case with any package management system that tracks dependencies, if you want to

remove one package, then you may end up removing more than one, due to the dependencies. The

easiest way to automatically resolve the dependency issues is to use a yum command:

yum remove package

While you can remove software packages with the rpm command, it won't remove dependency

packages automatically.

11.3.2.4 RPM - Querying Packages
Red Hat package management is similar to Debian package management when it comes to

performing queries. It is best to use the back-end tool (rpm) instead of the front-end tool (yum). While

front-end tools can perform some of these queries, performance suffers because these commands

typically connect to multiple repositories across the network when executing any command.

The rpm command performs its queries by connecting to a database that is local to the machine and

doesn't connect over the network to any repositories.

To get a list of all the packages that are currently installed on the system, execute the rpm -

qacommand.

To list the files that comprise a particular package, execute the rpm -ql package command.

To query a package for information, or its state, execute the rpm -qi package command.

To determine if a particular file was put on the filesystem as the result of installing a package,

execute the rpm -qf /path/to/file command.

11.4 Linux Kernel
When most people refer to Linux, they are really referring to GNU/Linux, which defines the operating

system. The Gnu's Not Unix (GNU) part of this combination is provided by a Free Software

Foundation project. GNU is what provides the open source equivalents of many common UNIX

commands, the bulk of the essential command line commands. The Linux part of this combination is

the Linux kernel, which is core of the operating system. The kernel is loaded at boot time and stays

loaded to manage every aspect of the running system.

The implementation of the Linux kernel includes many subsystems that are a part of the kernel itself

and others that may be loaded in a modular fashion when needed. Some of the key functions of the

Linux kernel include a system call interface, process management, memory management, virtual

filesystem, networking, and device drivers.

In a nutshell, the kernel accepts commands from the user and manages the processes that carry out

those commands by giving them access to devices like memory, disks, network interfaces,

keyboards, mice, monitors and more.

The kernel provides access to information about running processes through a pseudo filesystemthat

is visible under the /proc directory. Hardware devices are made available through special files

under the /dev directory, while information about those devices can be found in another pseudo

filesystem under the /sys directory.

The /proc directory not only contains information about running processes, as its name would

suggest (process), but it also contains information about the system hardware and the current kernel

configuration. See an example output below:

The output from executing ls /proc shows more than one hundred numbered directories. There is

a numbered directory for each running process on the system, where the name of the directory

matches the PID (process ID) for the running process.

Because the /sbin/init process is always the first process, it has a PID of 1 and the information

about the /sbin/init process can be found in the /proc/1 directory. As you will see later in this

chapter, there are several commands that allow you to view information about running processes, so

it is rarely necessary for users to have to view the files for each running process directly.

You might also see that there are a number of regular files the /proc directory, such

as/proc/cmdline, /proc/meminfo and /proc/modules. These files provide information about

the running kernel:

 The /proc/cmdline file can be important because it contains all of the information that was

passed to the kernel as the kernel was first started.

 The /proc/meminfo file contains information about the use of memory by the kernel.

 The /proc/modules file holds a list of modules currently loaded into the kernel to add extra

functionality.

Again, there is rarely a need to view these files directly, as other commands offer more "user

friendly" output and an alternative way to view this information.

While most of the "files" underneath the /proc directory cannot be modified, even by the root user,

the "files" underneath the /proc/sys directory can be changed by the root user. These files are

special in that making they change the behavior of the Linux kernel.

Direct modification of these files cause only temporary changes to the kernel. To make changes

permanent, entries can be added to the /etc/sysctl.conf file.

For example, the /proc/sys/net/ipv4 directory contains a file namedicmp_echo_ignore_all. If

that file contains a zero (0), as it normally does, then the system will respond to icmp requests. If that

file contains a one (1), then the system will not respond to icmp requests:

[user@localhost ~]$ su -

Password:

[root@localhost ~]# cat /proc/sys/net/ipv4/icmp_echo_ignore_all

0

[root@localhost ~]# ping -c1 localhost

PING localhost.localdomain (127.0.0.1) 56(84) bytes of data.

64 bytes from localhost.localdomain (127.0.0.1): icmp_seq=1 ttl=64 time=0.026 ms

--- localhost.localdomain ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time 0ms

rtt min/avg/max/mdev = 0.026/0.026/0.026/0.000 ms

[root@localhost ~]# echo 1 > /proc/sys/net/ipv4/icmp_echo_ignore_all

[root@localhost ~]# ping -c1 localhost

PING localhost.localdomain (127.0.0.1) 56(84) bytes of data.

--- localhost.localdomain ping statistics ---

1 packets transmitted, 0 received, 100% packet loss, time 10000ms

11.5 Process Hierarchy

When the kernel finishes loading during the boot procedure, it starts the /sbin/init process and

assigns it a Process Id (PID) of 1. This process then starts other system processes and each

process is assigned a PID in sequential order.

As the /sbin/init process starts up other processes, they in turn may start up processes, which

may start up other processes, on and on. When one process starts another process, the process

that performs the starting is called the parent process and the process that is started is called

the child process. When viewing processes, the parent PID will be labeled PPID.

When the system has been running for a long time, it will eventually reach the maximum PID value,

which can be viewed and configured through the /proc/sys/kernel/pid_max file. Once the

largest PID has been used, the system will "roll over" and resume by assigning PID values that are

available at the bottom of the range.

You can "map" processes into a family tree of parent and child couplings. If you want to view this

tree, the command pstree will display it:

If you were to examine the parent and child processes relationship, using the output of the previous

command, you could consider it to be like the following:

11.6 ps (Process) Command
Another way of viewing processes is with the ps command. By default, the ps command will only

show the current processes running in the current shell. Ironically, you will see ps running when you

want to see what else is running in the current shell:

Similar to the pstree command, if you run ps with the option --forest, then it will show lines

indicating the parent and child relationship:

To be able to view all processes on the system you can execute either the ps aux command or

the ps -ef command:

The output of all processes running on a system can definitely be overwhelming. In the example

provided, the output of the ps command was filtered by the head command, so only the first ten

processes were shown. If you don't filter the output of the ps command, then you are likely to have

to scroll through hundreds of processes to find what might interest you.

A common way to run the ps command is to use the grep command to filter the output display lines

that match a keyword, such as the process name. For example, if you wanted to view the

information about the firefox process, you may execute a command like:

[sysadmin@localhost ~]$ ps -e | grep firefox

 6090 pts/0 00:00:07 firefox

As the root user, you may be more concerned about the processes of another user, than you are

over your own processes. Because of the several styles of options that the ps command supports,

there are different ways to view an individual user's processes. Using the traditional UNIX option, to

view the processes of the "sysadmin" user, execute the following command:

[root@localhost ~]# ps -u username

Or use the BSD style of options and execute:

[root@localhost ~]# ps u U username

11.7 top Command
The ps command provides a "snapshot" of the processes running at the instant the command is

executed, the top command that will regularly update the output of running processes. The top

command is executed as follows:

sysadmin@localhost:~$ top

By default, the output of the top command is sorted by the % of CPU time that each process is

currently using, with the higher values listed first. This means processes that are "CPU hogs" are

listed first:

There is an extensive list of commands that can be executed from within the running top program:

Keys Meaning

h or ? Help

l Toggle load statistics

t Toggle time statistics

m Toggle memory usage statistics

< Move sorted column to the left

> Move sorted column to the right

Keys Meaning

F Choose sorted field

R Toggle sort direction

P Sort by % CPU

M Sort by % memory used

k Kill a process (or send it a signal)

r Renice priority of a process

One of the advantages of the top command is that it can be left running to stay on "top" of

processes for monitoring purposes. If a process begins to dominate, or "run away" with the system,

then it will by default appear at the top of the list presented by the top command. An administrator

that is running the top command can then take one of two actions:

 Terminate the "run away" process: Pressing the k key while the top command is running will

prompt the user to provide the PID and then a signal number. Sending the default signal

will request the process terminate, but sending signal number 9, the "KILL" signal, will force

the process to terminate.

 Adjust the priority of the process: Pressing the r key while the top command is running will

prompt the user for the process to "renice", and then a niceness value. Niceness values can

range from -20 to 19, and affect priority. Only the root user can use a niceness that is a lower

number than the current niceness, or a negative niceness value, which causes the process

to run with an increased priority. Any user can provide a niceness value that is higher than

the current niceness value, which will cause the process to run with a lowered priority.

Another advantage of the top command is that it is able to give you an overall representation of how

busy the system is currently and the trend over time. The load averages shown in the first line of

output from the top command indicate how busy the system has been during the last one, five and

fifteen minutes. This information can also be viewed by executing the uptime command or directly

by displaying the contents of the /proc/loadavg file:

$ cat /proc/loadavg

0.12 0.46 0.25 1/254 3052

The first three numbers in this file indicate the load average over the last one, five and fifteen minute

intervals. The fourth value is a fraction which shows the number of processes currently executing

code on the CPU (1) and the total number of processes (254). The fifth value is the last PID value

that executed code on the CPU.

The number reported as a load average is proportional to the number of CPU cores that are able to

execute processes. On a single core CPU, a value of one would mean that the system is fully

loaded. On a four core CPU, a value of one would mean that the system is only 1/4 or 25% loaded.

Another reason administrators like to keep the top command running is the ability to monitor

memory usage in real-time. Both the top and the free command display statistics for how overall

memory is being used.

The top command also has the ability to show the percent of memory used by each process, so a

process that is consuming an inordinate amount of memory can quickly be identified.

11.8 free Command
Executing the free command without any options provides a snapshot of the memory used at that

moment.

If you want to monitor memory usage over time with the free command, then you can execute it

with the -s option and specify that number of seconds. For example, executing free -s 10would

update the output every ten seconds.

To make it easier to interpret what the free command is outputting the -m or -g options can be

useful to show the output in either megabytes or gigabytes, respectively. Without these options, the

output is displayed in bytes:

$ free

 total used free shared buffers cached

Mem: 510984 495280 15704 0 60436 258988

-/+ buffers/cache: 175856 335128

Swap: 1048568 0 1048568

When reading the output of the free command:

 The first line is a descriptive header.

 The second line labeled "Mem:" is the statistics for the physical memory of the system.

 The third line represents the amount of physical memory after adjusting those values by not

taking into account any memory that is in use by the kernel for buffers and caches.

Technically, this "used" memory could be "reclaimed" if needed.

 The fourth line of output refers to "Swap" memory, also known as virtual memory. This is

space on the hard disk that is used like physical memory when the amount of physical

memory becomes low. Effectively, this makes it seem that the system has more memory

than it really does, but using swap space can also slow down the system.

If the amount of memory and swap that is available becomes very low, then the system will begin to

automatically terminate processes. This is one reason why it is important to monitor the system's

memory usage. An administrator that notices the system becoming low on free memory can use

top or kill to terminate the processes of their own choice, rather than letting the system choose.

11.9 Log Files
As the kernel and various processes run on the system, they produce output that describes how they

are running. Some of this output is displayed in the terminal window where the process was

executed, but some of this data is not sent to the screen, but instead it is written to various files. This

is called "log data" or "log messages".

These log files are very important for a number of reasons; they can be helpful in trouble-shooting

problems and they can be used for determining whether or not unauthorized access has been

attempted.

Some processes are able to "log" their own data to these files, other processes rely on another

process (a daemon) to handle these log data.

These logging daemons can vary from one distribution to another. For example, on some

distributions, the daemons that run in the background to perform logging are called as syslogd

and klogd. In other distributions, a single daemon such as rsyslogd in Red Hat and Centos

orsystemd-journald in the Fedora may serve this logging function.

Regardless of what the daemon process is named, the log files themselves are almost always

placed into the /var/log directory structure. Although some of the file names may vary, here are

some of the more common files to be found in this directory:

File Contents

boot.log Messages generated as services are started during the startup of the system.

cron Messages generated by the crond daemon for jobs to be executed on a

File Contents

recurring basis.

dmesg Messages generated by the kernel during system boot up.

maillog Messages produced by the mail daemon for e-mail messages sent or received

messages Messages from the kernel and other processes that don't belong elsewhere.

Sometimes named "syslog" instead of "messages" after the daemon that writes

this file.

secure Messages from processes that required authorization or authentication (such

as the login process).

Xorg.0.log Messages from the X windows (GUI) server.

Log files are rotated, meaning older log files are renamed and replaced with newer log files. The file

names that appear in the table above may have a numeric or date suffix added to them, for

example: secure.0 or secure-20131103

Rotating a log file typically occurs on a regularly scheduled basis, for example, once a week. When a

log file is rotated, the system stops writing to the log file and adds a suffix to it. Then a new file with

the original name is created and the logging process continues using this new file.

With the modern daemons, a date suffix is typically used. So, at the end of the week ending

November 3, 2013, the logging daemon might stop writing to /var/log/messages, rename that

file /var/log/messages-20131103, and then begin writing to a new /var/log/messages file.

Although most log files contain text as their contents, which can be viewed safely with many tools,

other files such as the /var/log/btmp and /var/log/wtmp files contain binary. By using

thefile command, you can check the file content type before you view it to make sure that it is safe

to view.

For the files that contain binary data, there are normally commands available that will read the files,

interpret their contents and then output text. For example, the lastb and last commands can be

used to view the /var/log/btmp and /var/log/wtmp files respectively.

For security reasons, most of the files found are not readable by ordinary users, so be sure to

execute commands that interact with these files with root privileges.

11.10 dmesg Command
The /var/log/dmesg file contains the kernel messages that were produced during system startup.

The /var/log/messages file will contain kernel messages that are produced as the system is

running, but those messages will be mixed in with other messages from daemons or processes.

Although the kernel doesn't have its own log file normally, one can be configured for them typically

by modifying either the /etc/syslog.conf or the /etc/rsyslog.conf file. In addition,

thedmesg command can be used to view the kernel ring buffer, which will hold a large number of

messages that are generated by the kernel.

On an active system, or one experiencing many kernel errors, the capacity of this buffer may be

exceeded and some messages might be lost. The size of this buffer is set at the time the kernel is

compiled, so it is not trivial to change.

Executing the dmesg command can produce up to 512 kilobytes of text, so filtering the command

with a pipe to another command like less or grep is recommended. For example, if you were

troubleshooting problems with your USB device, then searching for the text "USB" with

the grepcommand being case insensitive may be helpful:

$ dmesg | grep -i usb

usbcore: registered new interface driver usbfs

usbcore: registered new interface driver hub

usbcore: registered new device driver usb

ehci_hcd: USB 2.0 'Enhanced' Host Controller (EHCI) Driver

ohci_hcd: USB 1.1 'Open' Host Controller (OHCI) Driver

ohci_hcd 0000:00:06.0: new USB bus registered, assigned bus number 1

usb usb1: New USB device found, idVendor=1d6b, idProduct=0001

usb usb1: New USB device strings: Mfr=3, Product=2, SerialNumber=1

